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Response of cotton phenology to 
climate change on the North China 
Plain from 1981 to 2012
Zhanbiao Wang1,2, Jing Chen1,2, Fangfang Xing1, Yingchun Han1, Fu Chen3, Lifeng Zhang2, 
Yabing Li1 & Cundong Li2

To identify countermeasures for the impacts of climate change on crop production, exploring the 
changes in crop phenology and their relationship to climate change is required. This study was based 
on cotton phenology and climate data collected from 13 agro-meteorological experimental stations 
and 13 meteorological stations on the North China Plain from 1981 to 2012. Spatiotemporal trends in 
the cotton phenology data, lengths of the different growing phases, mean temperatures, and rainfall 
were analyzed. These results indicated that warming accelerated cotton growth, advanced cotton 
phenology, and shortened the growing period of cotton. However, harvest dates were significantly 
delayed at 8 (61.5%) stations, the length of both the flowering-boll opening and boll opening-harvest 
periods increased at 10 (77.0%) stations, and a positive correlation was found between the mean 
temperature and the length of the whole growing period at 10 (77.0%) stations. Therefore, cotton 
practices and cultivars on the North China Plain should be adjusted accordingly. The response of cotton 
phenology to climate change, as shown here, can further guide the development of options for the 
adaptation of cotton production in the near future.

Climate change is projected to dramatically affect crop production across broad regions of the world in the 21st 
century1. Many recent studies have shown that climate change has a significant impact on crop production2–4. 
Lobell et al.2 reported that each degree day above 30 °C decreased the African maize yield by 1% under optimal 
precipitation conditions and by 1.7% under drought conditions. Moreover, Liu et al.3 showed that over the past 40 
years, increased temperatures have caused the northward expansion of the northern limit of maize in Northeast 
China. Chen et al.4 studied the impact of climate change on cotton yields in China, and the results showed that 
climate change decreased cotton yields. However, beneficial effects were found in the cotton-growing regions of 
Northwest China from 1961 to 2010. Therefore, the potential impact of climate change on the development and 
productivity of field crops is of great concern and has been evaluated extensively through simulation models, 
statistical analyses, and field experiments5–7.

Phenology refers to periodic life-cycle events and is important for plant survival and reproduction8. Plant 
phenology is strongly controlled by short- and long-term climate variability; consequently, phenological shifts 
have been among the strongest biological indicators of climate change9, 10. Phenological studies significantly con-
tributed the conclusions of the International Panel of Climate Change’s (IPCC’s) Fourth Assessment Report that 
“there is very high confidence of biological responses to climate change, based on more evidences from a wider 
range of species”11. Therefore, investigations of the spatiotemporal changes in crop phenology and the relation-
ships between phenology and climate change are important for understanding the processes and mechanisms 
underlying crop responses and adaptations to agro-meteorological stressors and ongoing climate change12, 13.

In this context, a number of studies on crop phenology based on observations of phenological events14–16, sat-
ellite analyses17, 18, and climatological analyses3, 19 have been reported. Tao et al.15 found that increased tempera-
tures advanced maize heading and maturity dates and reduced the duration of the whole growing period at 81.3%, 
82.1% and 83.9% of the examined stations in China by 3.2, 6.0 and 3.5 days per decade on average, respectively, 
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from 1981 to 2009. Lu et al.17 developed a curve-fitting approach to enhance phenological extraction for winter 
wheat from a time series of SPOT-VEGETATION products. Using observed climatic and maize phenological 
data collected from 1990 to 2012. Li et al.12 analyzed the correlations between maize phenology and temperature 
in Northeast China based on data collected from 1990 to 2012. Indeed, most studies have focused on principal 
food crops, and research related to the impact of climate change on cotton phenology therefore remains scarce.

The North China Plain is one of the most important cotton production regions in China, encompassing 
19,788 km2 and accounting for 38.66% of the area sown with cotton in China from 2005 to 201520. The average 
surface temperature of this region has increased at a rate of 0.25 °C per decade over the past 50 years21. These large 
increases in temperature affect cotton growth and threaten the stability of cotton production in China. Therefore, 
investigations examining the effects of climate change on cotton phenology on the North China Plain are urgently 
needed. Furthermore, to understand the processes and mechanisms controlling the response of cotton to ongoing 
climate change, changes in cotton phenology that have occurred during the past several decades on the North 
China Plain in response to climate change must be investigated.

The objectives of this study were (1) to investigate the spatiotemporal changes in cotton phenology on the 
North China Plain, (2) to examine the relationships between climate change and the lengths of different cotton 
growing periods, and (3) to understand the consequences of phenological changes and their implications for 
cotton production and adaptation to climate change on the North China Plain.

Results
Shifts in the timing of cotton phenophases.  The sowing, emergence, squaring, flowering, and boll 
opening dates of cotton were advanced by 0.24, 1.29, 0.91, 2.71 and 0.82 days per decade on average, respectively, 
whereas the cotton harvest date was delayed by 0.28 days per decade on average from 1981 to 2012 (Fig. 1a). 
Among the 13 stations, sowing, emergence, squaring, flowering, and boll opening dates were advanced at 7 
(53.9%), 8 (61.5%), 9 (69.2%), 10 (76.9%), and 7 (53.8.1%) stations, respectively, and 8 (61.5%) stations pre-
sented delayed harvest dates (Fig. 2). Furthermore, from 1981 to 2012, the cotton flowering date was significantly 
advanced at 7 (53.9%) of the 13 stations, mainly in Hebei and Shandong Provinces, whereas the date was signifi-
cantly delayed at 2 (15.4%) stations, mainly in Henan Province.

Shifts in the length of cotton phenophases.  In general, the sowing-emergence, emergence-squaring, 
and squaring-flowering periods and the whole growing period of cotton were shorter by 1.50, 1.94, and 1.96 days 
per decade on average, respectively, while the flowering-boll opening and boll opening-harvest periods were 
longer by 1.28 and 2.20 days per decade on average, respectively, (Fig. 1b). The lengths of the sowing-emergence, 
emergence-squaring, and squaring-flowering periods and the whole growing period decreased at 12 (92.3%), 8 
(61.5%), 12 (92.3%) and 8 (61.5%) stations, respectively, and this decrease was significant at 9 (69.2%), 5 (38.5%), 
6 (46.2%), and 5 (38.5%) of these stations, respectively, among the 13 North China Plain stations (Fig. 3). In con-
trast, the lengths of both the flowering-boll opening and boll opening-harvest periods increased at 10 (77.0%) 
stations, with 1 (7.7%) and 3 (23.1%) of the 13 North China Plain stations showing significant increases during 
these respective periods. Furthermore, while the length of the whole growing period increased at the northern 
North China Plain stations, it decreased at most of the stations.

Relationship between cotton phenology and Tmean.  On average, a general warming trend was 
observed (Fig. 4). The Tmean values during the sowing-emergence, emergence-squaring, squaring-flowering, 
flowering-boll opening, and boll opening-harvest periods and the whole growing period increased 0.29, 0.31, 
0.43, 0.05, 0.36, and 0.24 °C per decade on average, respectively. From 1981 to 2012, the Tmean values during the 
sowing-emergence, emergence-squaring, squaring-flowering, flowering-boll opening, and boll opening-harvest 
periods and the whole growing period increased at 10 (77.0%), 12 (92.3%), 13 (100.0%), 11 (84.6%),12 (92.3%) 
and 12 (92.3%) stations, respectively, and this increase was significant at 1 (7.7%), 6 (46.2%), 8 (61.5%), 0 (0%), 9 
(69.2%) and 10 (77.0%) stations, respectively, although decreases were also observed at several stations.

The correlation coefficients between Tmean and the lengths of the sowing-emergence, emergence-squaring, 
squaring-flowering and flowering-boll opening periods were generally negative, at −0.20, −0.17, −0.29, −0.35 on 
average, respectively, while the correlation coefficients between Tmean and the boll opening-harvest and whole 
growing periods were generally positive, at 0.20 and 0.11 on average, respectively (Fig. 1c). A negative correlation 
was found at 11 (84.6%), 9 (69.2%), 12 (92.3%), and 12 (92.3%) stations, and this correlation was significant at 
4 (30.8%), 5 (38.5%), 6 (46.2%), and 6 (46.2%) stations, respectively (P < 0.05). In contrast, the correlation coef-
ficients between Tmean and the lengths of the boll opening-harvest period and the whole growing period were 
positive at 11 (84.6%) and 10 (77.0%) stations, respectively. These correlations were significant at 1 (7.7%) and 2 
(15.4%) stations, respectively (P < 0.05) (Fig. 5).

Relationship between cotton phenology and rainfall.  The rainfall values during the 
squaring-flowering and boll opening-harvest periods and the whole growing period were increased by 14.08, 
1.69, and 6.85 mm per decade on average, respectively (Fig. 6). An increasing rainfall trend was found at 11 
(84.6%), 10 (76.9%), and 10 (76.9%) stations during the squaring-flowering and boll opening-harvest periods and 
the whole growing period, respectively.

The correlation coefficients between rainfall and the lengths of the sowing-emergence were generally negative, 
at 0.05 on average, while the correlation coefficients between rainfall and the length of the flowering-boll opening 
periods and the whole growing period were generally positive, at 0.23 and 0.10 on average, respectively (Fig. 1d). 
The length of the sowing-emergence period was negatively correlated with rainfall at 9 (69.2%) stations (Fig. 7). 
Furthermore, the correlation coefficient between rainfall and the length of the flowering-boll opening and the 
whole growing periods was positive at 11 (84.6%) and 9 (69.2%) stations, respectively.
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Discussion
Response of cotton phenology to changes in temperature and rainfall.  Many recent studies have 
documented an explicit change in crop phenology across broad regions due to climate change22–24. However, most 
studies have focused on major food crops, and only a few have addressed trends of cotton phenology in the con-
text of climate change8. The present study assessed trends in cotton phenology, Tmean and rainfall on the North 
China Plain with respect to different cotton growing periods from 1981 to 2012. Furthermore, the relationships 
of the length of cotton growing periods with Tmean and rainfall were investigated. The results showed that the 

Figure 1.  Trends in phenological dates (a) and the length the of growing period (b), correlations between 
Tmean and the length of the growing period (c), and correlations between rainfall and the length of growing 
period (d). The blue line is the zero line. Trends above or below the line represent a delay or advance, 
respectively, in phenology (a) or a prolonged or shortened growing period (b). The correlation coefficients 
above or below the line represent a positive or negative correlation (c,d).
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sowing, emergence, squaring, flowering, and boll opening dates of cotton were advanced by 0.24, 1.29, 0.91, 2.71 
and 0.82 days per decade on average, respectively, but the cotton harvest date was delayed by 0.28 days on average 
per decade. Furthermore, while the lengths of sowing-emergence, emergence-squaring, and squaring-flowering 

Figure 2.  Spatiotemporal changes in the cotton sowing (a), emergence (b), squaring (c), flowering (d), boll 
opening (e), and harvest (f) dates across the North China Plain from 1981 to 2012. Green and red circles 
represent the trends of the phenological date. Black pentagrams represent the trends at the stations, with a 
significance level of 0.05. Maps were generated using ArcGIS 10.1 (ESRI Inc, Redlands, CA, USA, http://www.
esri.com/).

Figure 3.  Spatiotemporal changes in the lengths of the sowing-emergence (a), emergence-squaring (b), 
squaring-flowering (c), flowering-boll opening (d), and boll opening-harvest (e) periods and the whole growing 
period (f) of cotton across the North China Plain from 1981 to 2012. Green and red circles represent the trends 
of the lengths of phenological periods. Black pentagrams represent the trends at the stations, with a significance 
level of 0.05. Maps were generated using ArcGIS 10.1 (ESRI Inc, Redlands, CA, USA, http://www.esri.com/).

http://www.esri.com/
http://www.esri.com/
http://www.esri.com/
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periods decreased, those of the flowering-boll opening and boll opening-harvest periods increased by 1.28 and 
2.20 days per decade on average, respectively.

Figure 4.  Trends in Tmean during the sowing-emergence (a), emergence-squaring (b), squaring-flowering (c), 
flowering-boll opening (d), and boll opening-harvest (e) periods and the whole growing period (f) of cotton 
across the North China Plain from 1981 to 2012. Green, yellow, and red circles represent the trends of the 
Tmean. Black pentagrams represent a significance level of 0.05. Maps were generated using ArcGIS 10.1 (ESRI 
Inc, Redlands, CA, USA, http://www.esri.com/).

Figure 5.  Correlation between Tmean and the lengths of the sowing-emergence (a), emergence-squaring (b), 
squaring-flowering (c), flowering-boll opening (d), and boll opening-harvest (e) periods and the whole growing 
period (f) of cotton across the North China Plain from 1981 to 2012. Green, yellow, and red circles represent 
the correlation coefficient. Black pentagrams represent a significance level of 0.05. Maps were generated using 
ArcGIS 10.1 (ESRI Inc, Redlands, CA, USA, http://www.esri.com/).

http://www.esri.com/
http://www.esri.com/
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Many studies have shown that crop growth may be accelerated by warming. The length of the wheat, bar-
ley, and rapeseed growing periods has decreased in the last several decades13, 16, 25. In the present study, warm-
ing trends occurred during different growing periods. In addition, the lengths of the sowing-emergence, 
emergence-squaring, squaring-flowering, and the flowering-boll opening periods were negatively correlated with 

Figure 6.  Rainfall trends during the sowing-emergence (a), emergence-squaring (b), squaring-flowering (c), 
flowering-boll opening (d), and boll opening-harvest (e) periods and the whole growing period (f) of cotton 
across the North China Plain from 1981 to 2012. Green and red circles represent the trends of rainfall. Black 
pentagrams represent a significance level of 0.05. Maps were generated using ArcGIS 10.1 (ESRI Inc, Redlands, 
CA, USA, http://www.esri.com/).

Figure 7.  Correlation between rainfall and the lengths of the sowing-emergence (a), emergence-squaring (b), 
squaring-flowering (c), flowering-boll opening (d), and boll opening-harvest (e) periods and the whole growing 
period (f) of cotton across the North China Plain from 1981 to 2012. Green, yellow, and red circles represent 
the correlation coefficient. Black pentagrams represent a significance level of 0.05. Maps were generated using 
ArcGIS 10.1 (ESRI Inc, Redlands, CA, USA, http://www.esri.com/).

http://www.esri.com/
http://www.esri.com/
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Tmean. The results were generally consistent with previous research on other crops13, 16. However, the lengths of 
the boll opening-harvest and whole growing periods were positively correlated with Tmean; climate warming 
lengthened the boll opening-harvest period by 5.58 day per °C on average. Thus, except for the delayed harvest 
date, all other cotton phenological dates were advanced, which indicated that cotton growth was accelerated by 
warming. However, the harvest date was delayed because of the indeterminate growth habit of cotton26, generally 
resulting in shorter growing periods before flowering but longer growing periods after flowering. Ultimately, the 
whole growing period was generally shorter in the southern part but longer in the northern part of the North 
China Plain.

Warming significantly impacts crop phenology9, 15. However, few studies have investigated the impact 
of changes in rainfall on cotton phenology. In the present study, increasing trends in rainfall were noted at 11 
(84.6%), 10 (76.9%), and 10 (76.9%) stations for the squaring-flowering and boll opening-harvest periods and the 
whole growing period, respectively. Furthermore, the lengths of the squaring-flowering and boll opening-harvest 
periods and the whole growing period were positively correlated with rainfall. Therefore, changes in rainfall 
would prolong the lengths of the squaring-flowering and boll opening-harvest periods and the whole growing 
period. However, the whole growing period of cotton in the southern part of the North China Plain decreased, 
which may be due to the impact of the change in Tmean on cotton phenology.

Comparisons with previous studies in other crops and other regions.  Previous studies showed a 
delay in the sowing date of winter wheat of 1.5 days per decade on average but an advance in the harvest date 
of 1.4 days per decade; therefore, the whole growing period was shortened15. Wang et al.27 reported that the 
summer maize sowing date occurred relatively early at 13 (48.1%) of 27 stations examined on the North China 
Plain, while maturity dates were significantly delayed at 10 (37.0%) stations; thus, the length of the whole growing 
period increased at 18 (63.0%) stations. Comparisons between these two crops showed that winter wheat and 
summer maize exhibited opposite results, whereas the results for cotton were more complex. These differences 
may be due to an impact of soil temperature on the sowing date and a warming trend in recent decades that 
has caused delayed sowing of winter wheat and advanced sowing of summer maize; however, because plastic 
film mulching technology has been applied for cotton, climate warming has less effect on cotton sowing date. 
Furthermore, the maturity date of winter wheat may have occurred early because warming may have accelerated 
crop growth and shortened the growing period. The maturity date of summer maize has been delayed because 
farmers have adopted appropriate farming practices and cultivars in response to climate warming, such as double 
delay technology for winter wheat and summer maize27. The harvest date of cotton has generally been advanced 
in the southern part of the North China Plain and delayed in the northern part, which may due to the indeter-
minate growth habit of cotton and the fact that the southern portion exhibits greater accumulated temperatures. 
Nevertheless, Lu et al. reported that increased temperatures advanced cotton phenology but whole growth period 
lengths were prolonged or shortened in various stations of eastern Australia, which was generally consistent with 
this study28. However, Huang and Ji reported that climate warming prolonged the whole growth period length of 
cotton in Xinjiang Province of China8.

Previous studies about other crops conducted in Europe and on the U.S. Great Plains have shown strong neg-
ative links between temperature and phenology, and the agricultural phases of many crops have been advanced 
due to increased temperatures22, 23, 29, 30. These findings are similar to our results. However, the lengths of the boll 
opening-harvest period and the whole growing period were positively correlated with Tmean in the present study, 
possibly because of the indeterminate growth habit of cotton. The indeterminate growth habit of cotton means 
that as long as the environment is suitable for cotton, it could continue to grow26. Furthermore, the majority of 
published studies have investigated the relationship between temperature change and crop phenology, but only 
a few studies have investigated the relationship between changes in rainfall and crop phenology29. The results of 
the present study showed that the relationship between rainfall and the length of the whole growing period was 
positive.

Countermeasures for the impact of climate change on cotton phenology.  Considering the 
increasing trend of temperature in relation to the cotton sowing time and the indeterminate growth habit of 
cotton, adjusting the sowing date would be beneficial for rational utilization of the heat resource to extend the 
period of cotton growth and to develop and improve the cotton yield potential. Moreover, farmers could make full 
use of the higher temperature during cotton sowing by adopting deep planting and other supporting technology 
to avoid the use of plastic film mulching during sowing and reduce “White Pollution”. Furthermore, this study 
indicated that flowering occurred earlier as a result of climate change. The risk of heat damage could increase by 
a combination of warming, the change in the date of flowering, and the particular sensitivity of cotton to extreme 
heat during flowering. Therefore, heat-resistant varieties and appropriate cultivation practices are required to 
reduce the impact of excessive heat. In addition, this study indicated that a warming trend in recent decades has 
delayed the cotton harvest date in the northern part of the North China Plain; therefore, adopting cultivars with 
a longer growing period would benefit future cotton production in the northern part of the North China Plain. 
Nevertheless, the temperature is higher after boll opening, and changes in farming practices, such as adjusting the 
sowing date and the use of newer cultivars, will therefore be necessary to adapt to climate warming.

Potential limitations of this study.  This study investigated the spatiotemporal changes in cotton phenol-
ogy and the relationships between cotton phenology and climate change. However, the impact of climate change 
on cotton phenology was not quantified. Changes in cotton phenology were found to occur in response to the 
combined effects of temperature, rainfall, agronomic management practices, and cultivars. Therefore, the conclu-
sions that can be drawn from this study are limited. Addressing these limitations will require further structured 
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experimental approaches, such as factorial experiments or model simulations. Additionally, the effect of climate 
change on cotton yields was not considered in this study and is a topic that we will address in the future.

Conclusions
This study investigated the spatiotemporal changes in cotton phenology and the length of different cotton growing 
phases and explored the relationship between the lengths of different cotton growing phases and climate change 
on the North China Plain from 1981 to 2012. The results showed that the sowing, emergence, squaring, flowering, 
and boll opening dates generally advanced, but harvest was delayed in the northern part and advanced in the 
southern part of the North China Plain. The sowing-emergence, emergence-squaring, and squaring-flowering 
periods of cotton were shortened by 1.50, 1.94, and 1.96 days per decade on average, respectively, but the 
flowering-boll opening and boll opening-harvest periods were prolonged on average by 1.28 and 2.20 days 
per decade, respectively. The lengths of the sowing-emergence, emergence-squaring, squaring-flowering, 
and flowering-boll opening periods were negatively correlated with Tmean, whereas the lengths of the boll 
opening-harvest period and the whole growing period were positively correlated with Tmean. The results indi-
cated that the phenology of cotton on the North China Plain has been significantly impacted by climate change 
and that such changes in cotton phenology affect the development and yield of cotton. Therefore, adjusting the 
sowing date, using heat-resistant varieties, and adopting appropriate cultivation practices will be necessary to 
combat climate change in the future. These results support the exploration of appropriate agricultural strategies 
and policies to adapt to global climate change on the North China Plain and in other areas with a similar ecology.

Materials and Methods
Study region.  The North China Plain extends from 112° to 122°E longitude and 32° to 42°N latitude, cover-
ing three provinces (Shandong, Hebei, and Henan) and two municipalities (Beijing and Tianjin; Fig. 8). Cotton is 
the largest cash crop by area in this region. This region exhibits average annual production of 2.07 million tons of 
cotton, accounting for 30.89% of China’s total cotton production from 2005 to 201420. Therefore, in the context of 
climate change, investigating cotton phenology on the North China Plain is important for the stability of cotton 
production in China.

Historical cotton phenology and climate data.  Cotton phenological data from 1981 to 2012 
were obtained from 13 agro-meteorological experimental stations maintained by the China Meteorological 
Administration. The Julian dates (day of year; DOY) of six phenological stages (sowing, emergence, squaring, 
flowering, boll opening, and harvest) were recorded at each station. A standardized observation method was 
used to collect the phenological data. On alternate days, observations were recorded by well-trained agricul-
tural technicians. Each phenological event was clearly defined. For example, the squaring date was recorded 
when 50% of the cotton was budding, and the boll opening date was recorded when 50% of the bolls on the 
cotton plants were open31. The whole growing period from sowing to maturity was divided into five phases, 
which included sowing-emergence, emergence-squaring, squaring-flowering, flowering-boll opening, and boll 
opening-harvest31.

Meteorological observation data, including the daily maximum and minimum temperatures and precip-
itation, were also collected from the China Meteorological Administration for the same period. Three of the 
agro-meteorological stations were located at the same sites as the meteorological stations, and the remaining 10 
agro-meteorological stations were located near the meteorological stations (Fig. 8). Using the interpolated daily 

Figure 8.  Locations and spatial distribution of the metrological and agro-meteorological stations on the North 
China Plain. A map of China showing the locations of the three provinces and municipalities within the country 
(shaded area). Black dots and green pentagrams represent the meteorological and agro-meteorological stations, 
respectively. Lines indicate province boundaries. Maps were generated using ArcGIS 10.1 (ESRI Inc, Redlands, 
CA, USA, http://www.esri.com/).

http://www.esri.com/
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temperature data, the daily mean temperature was estimated as the average of the daily minimum and maximum 
air temperatures for each agrometeorological station.

Data analysis.  Trends of cotton phenology, length of growing periods, mean temperatures, and rainfall were 
calculated using Microsoft Office 2013 software (Redmond, WA, USA). The statistical significance of any trends 
was tested using a two-tailed t test in the SPSS 11.0 analytical software package (SPSS Inc., Chicago, IL, USA). 
Correlations of the lengths of the different growing phases with mean temperature (Tmean) or rainfall were 
investigated using Pearson’s correlation analysis. The spatial distributions of phenology and climate data were 
displayed using ArcGIS 10.1 software (ESRI Inc, Redlands, CA, USA, http://www.esri.com/).
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